Каталог заданий.
2. Тригонометрия

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1

1.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x умно­жить на ко­си­нус 3x.

а)  До­ка­жи­те, что f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те 2x плюс ко­си­нус 2x минус 1 пра­вая круг­лая скоб­ка .

б)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0.

в)  Упро­сти­те вы­ра­же­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка и вы­чис­ли­те его зна­че­ние при x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби .

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус 3x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби на от­рез­ке  левая квад­рат­ная скоб­ка минус Пи ; Пи пра­вая квад­рат­ная скоб­ка .


Задание парного варианта: 1892


2

1.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = синус 3x умно­жить на ко­си­нус 4x.

а)  Вы­чис­ли­те f левая круг­лая скоб­ка минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

б)  Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: синус 2x умно­жить на ко­си­нус 5x плюс синус x умно­жить на ко­си­нус 2x, зна­ме­на­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка конец дроби .

в)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = синус 3x умно­жить на синус 4x.

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус 3x конец дроби боль­ше или равно дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби на от­рез­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ;0 пра­вая квад­рат­ная скоб­ка .


Задание парного варианта: 1902


3

2.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x.

а)  Вы­чис­ли­те f левая круг­лая скоб­ка 2 альфа пра­вая круг­лая скоб­ка , если из­вест­но, что f левая круг­лая скоб­ка альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби .

б)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка =f левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка .

в)  До­ка­жи­те, что f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 ко­си­нус x минус 1 пра­вая круг­лая скоб­ка .

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка , зна­ме­на­тель: f левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка конец дроби мень­ше 0 на от­рез­ке  левая квад­рат­ная скоб­ка 0; Пи пра­вая квад­рат­ная скоб­ка .


Задание парного варианта: 1913


4

1.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 синус в квад­ра­те x минус синус 2x.

а)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 ко­си­нус в квад­ра­те x на от­рез­ке  левая квад­рат­ная скоб­ка 0; Пи пра­вая квад­рат­ная скоб­ка .

б)  Пусть g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =f левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка . Вы­чис­ли­те g левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

в)  До­ка­жи­те, что  дробь: чис­ли­тель: 2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка конец дроби = тан­генс x минус 1.

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0 на от­рез­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Задание парного варианта: 1922


5
 № 1927
i

1.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = синус 5x минус ко­си­нус 3x минус синус x.

а)  До­ка­жи­те, что  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус 3x конец дроби =2 синус 2x минус 1.

б)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0.

в)  Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: f левая круг­лая скоб­ка x плюс Пи пра­вая круг­лая скоб­ка , зна­ме­на­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка конец дроби .

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус 3x конец дроби мень­ше 0 на от­рез­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .


Задание парного варианта: 1932


Пройти тестирование по этим заданиям