Задания
Версия для печати и копирования в MS Word

1.  Дана функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x умно­жить на ко­си­нус 3x.

а)  До­ка­жи­те, что f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те 2x плюс ко­си­нус 2x минус 1 пра­вая круг­лая скоб­ка .

б)  Ре­ши­те урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0.

в)  Упро­сти­те вы­ра­же­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка и вы­чис­ли­те его зна­че­ние при x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби .

г)  Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус 3x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби на от­рез­ке  левая квад­рат­ная скоб­ка минус Пи ; Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем ис­ход­ной вы­ра­же­ние:

 ко­си­нус x ко­си­нус 3x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 3x минус x пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка 3x плюс x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка ко­си­нус 2x плюс ко­си­нус 4x пра­вая круг­лая скоб­ка =
= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка ко­си­нус 2x плюс ко­си­нус 2 умно­жить на 2x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка ко­си­нус 2x плюс 2 ко­си­нус в квад­ра­те 2x минус 1 пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те 2x плюс ко­си­нус 2x минус 1 пра­вая круг­лая скоб­ка .

б)  Если  ко­си­нус x ко­си­нус 3x=0, то либо  ко­си­нус x=0, либо  ко­си­нус 3x=0. Вто­рой слу­чай дает 3x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k т. е. x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z . Пер­вый слу­чай дает x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k, k при­над­ле­жит Z . Но все такие от­ве­ты уже вклю­че­ны в пер­вый набор, пи­сать их еще раз не нужно.

в)  Упро­стим ис­ход­ное вы­ра­же­ние:

f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс f левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = ко­си­нус x ко­си­нус 3x плюс ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка ко­си­нус 3 левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка =
= ко­си­нус x ко­си­нус 3x плюс левая круг­лая скоб­ка минус синус x пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 3x пра­вая круг­лая скоб­ка = ко­си­нус x ко­си­нус 3x минус синус x синус 3x= ко­си­нус левая круг­лая скоб­ка 3x плюс x пра­вая круг­лая скоб­ка = ко­си­нус 4x.

При x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби по­лу­чим  ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

г)  Вы­ра­же­ние  дробь: чис­ли­тель: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: ко­си­нус 3x конец дроби = ко­си­нус x при всех x кроме x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби , k при­над­ле­жит Z (см. пункт а). Решая не­ра­вен­ство  ко­си­нус x боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби по­лу­чим x при­над­ле­жит левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка . С уче­том усло­вия о за­пре­те не­ко­то­рых зна­че­ний x окон­ча­тель­ный ответ

x при­над­ле­жит левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка .

 

Ответ: б)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 3 конец дроби :k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; в)  ко­си­нус 4x,  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; г) левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 1892

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ба­зо­вые клас­сы, Санкт-Пе­тер­бург, 1993 год, ва­ри­ант 1
? Классификатор: Вы­чис­ле­ния и пре­об­ра­зо­ва­ния в три­го­но­мет­рии, Три­го­но­мет­ри­че­ские не­ра­вен­ства, Три­го­но­мет­ри­че­ские урав­не­ния
?
Сложность: 5 из 10