Задания
Версия для печати и копирования в MS Word
 № 3278
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс x пра­вая круг­лая скоб­ка мень­ше минус 1.

Спрятать решение

Ре­ше­ние.

Об­ласть опре­де­ле­ния функ­ции y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс x пра­вая круг­лая скоб­ка за­да­ет­ся не­ра­вен­ством x в квад­ра­те плюс x боль­ше 0, или  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка боль­ше 0. Решая это не­ра­вен­ство, уста­нав­ли­ва­ем, что оно вы­пол­ня­ет­ся при каж­дом x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка (рис. а).

 

Функ­ция y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка t мо­но­тон­но убы­ва­ет, а не­ра­вен­ство, дан­ное в усло­вии, можно пред­ста­вить в ином виде, а имен­но:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс x пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка . Учи­ты­вая эти факты, по­лу­ча­ем не­ра­вен­ство x в квад­ра­те плюс x боль­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка , или x в квад­ра­те плюс x минус 2 боль­ше 0. Раз­ло­жим трёхчлен x в квад­ра­те плюс x минус 2 на мно­жи­те­ли и решим не­ра­вен­ство  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 0 (рис. б); по­лу­чим объ­еди­не­ние про­ме­жут­ков  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка . Те­перь ре­ше­ние сво­дит­ся к на­хож­де­нию пе­ре­се­че­ния двух мно­жеств, пред­став­лен­ных на­гляд­но на ри­сун­ке а и б. Ис­ко­мое мно­же­ство по­ка­за­но штри­хов­кой на ри­сун­ке.

 

Ответ:  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

 

За­ме­ча­ние. За­пи­шем два рас­смот­рен­ных в ре­ше­нии усло­вия в виде си­сте­мы не­ра­венств

 си­сте­ма вы­ра­же­ний x в квад­ра­те плюс x боль­ше 0,x в квад­ра­те плюс x боль­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

Те­перь не­труд­но за­ме­тить, что пер­вое не­ра­вен­ство яв­ля­ет­ся след­стви­ем вто­ро­го. Для того чтобы ре­шить ис­ход­ную за­да­чу, до­ста­точ­но ре­шить вто­рое не­ра­вен­ство.

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 3272

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ба­зо­вые клас­сы, РФ, 1992 год, ра­бо­та 9, ва­ри­ант 2
? Классификатор: Ло­га­риф­ми­че­ские не­ра­вен­ства
?
Сложность: 3 из 10