Задания
Версия для печати и копирования в MS Word
 № 2719
i

На гра­фи­ке функ­ции y=x минус x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс 1 най­ди­те точку, сумма рас­сто­я­ний от ко­то­рой до осей ко­ор­ди­нат наи­мень­шая.

Спрятать решение

Ре­ше­ние.

Обо­зна­чим x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка =a, тогда ко­ор­ди­на­ты этой точки будут  левая круг­лая скоб­ка a в сте­пе­ни 4 ; a в сте­пе­ни 4 минус a плюс 1 пра­вая круг­лая скоб­ка . Сразу за­ме­тим, что

a в сте­пе­ни 4 минус a плюс 1=a в сте­пе­ни 4 минус a в квад­ра­те плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс a в квад­ра­те минус a плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби = левая круг­лая скоб­ка a в квад­ра­те минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка a минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби боль­ше 0,

по­это­му сумма рас­сто­я­ний до осей равна про­сто сумме ко­ор­ди­нат точки, то есть 2a в сте­пе­ни 4 минус a плюс 1. Оста­лось найти наи­мень­шее зна­че­ние этой функ­ции при a боль­ше или равно 0. Возь­мем ее про­из­вод­ную. По­лу­чим 8a в кубе минус 1, что по­ло­жи­тель­но при a боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби и от­ри­ца­тель­но при a мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , по­это­му ис­ход­ная функ­ция убы­ва­ет при a мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , воз­рас­та­ет при a боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби и имеет наи­мень­шее зна­че­ние при a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Зна­чит, это точка  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби ; дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби пра­вая круг­лая скоб­ка .

 

Ответ:  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби ; дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 2725

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ма­те­ма­ти­че­ские клас­сы, РФ, 1996 год, ра­бо­та 3, ва­ри­ант 1
? Классификатор: Рас­сто­я­ние между точ­ка­ми, плос­ко­стя­ми
?
Сложность: 8 из 10