Задания
Версия для печати и копирования в MS Word
 № 2485
i

Най­ди­те наи­боль­ший мо­дуль ком­плекс­но­го числа z, удо­вле­тво­ря­ю­ще­го усло­вию |z минус i| мень­ше или равно |z плюс ко­рень из 3 |.

Спрятать решение

Ре­ше­ние.

Точка, со­от­вет­ству­ю­щая опре­де­ля­е­мо­му за­дан­ным усло­ви­ем числу z, рав­но­уда­ле­на от точек A (0; 1) и B (− ко­рень из 3 ; 0) ком­плекс­ной плос­ко­сти (см. ри­су­нок), со­от­вет­ству­ю­щих чис­лам i и − ко­рень из 3 . Таким об­ра­зом, ис­ко­мая точка лежит на се­ре­дин­ном пер­пен­ди­ку­ля­ре к AB.

Най­дем рас­сто­я­ние от точки O до се­ре­дин­но­го пер­пен­ди­ку­ля­ра. Это можно сде­лать ис­хо­дя из гео­мет­ри­че­ских со­об­ра­же­ний: C левая круг­лая скоб­ка 0; минус 1 пра­вая круг­лая скоб­ка . AB=BC=AC=2. \Delta ABC  — пра­виль­ный; C при­над­ле­жит l. \rho левая круг­лая скоб­ка O; l пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби \rho левая круг­лая скоб­ка A; l пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби AB = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

 

Ответ:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 2479

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ма­те­ма­ти­че­ские клас­сы, РФ, 1992 год, ра­бо­та 1, ва­ри­ант 2
? Классификатор: Урав­не­ния с ком­плекс­ны­ми чис­ла­ми и их си­сте­мы
?
Сложность: 8 из 10