Заголовок: Выпускной экзамен по математике. Математические классы, РФ, 1994 год, работа 4, вариант 2
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ УРОК — выпускные экзамены по математике
Вариант № 563

Выпускной экзамен по математике. Математические классы, РФ, 1994 год, работа 4, вариант 2

Для по­лу­че­ния оцен­ки «5» не­об­хо­ди­мо верно и пол­но­стью ре­шить 5 за­да­ний.

 

Про­дол­жи­тель­ность эк­за­ме­на 5 аст­ро­но­ми­че­ских часов.

1.  
i

Сумма трех чисел равна 28, из­вест­но, что их ло­га­риф­мы по ос­но­ва­нию 4 об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию, сумма пер­вых трех чле­нов ко­то­рой равна 4,5. Най­ди­те раз­ность этой про­грес­сии.

2.  
i

Най­ди­те мно­же­ство зна­че­ний функ­ции g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = синус в квад­ра­те левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка минус ко­си­нус 2x.

3.  
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни левая круг­лая скоб­ка 1 минус 2x пра­вая круг­лая скоб­ка плюс 6 умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 в сте­пе­ни левая круг­лая скоб­ка 8 минус ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те пра­вая круг­лая скоб­ка минус 3x конец дроби .

4.  
i

Из­вест­но, что для ком­плекс­но­го числа z |z плюс 10|= ко­рень из: на­ча­ло ар­гу­мен­та: 65 конец ар­гу­мен­та , а |z минус 2i|= ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та . Най­ди­те все воз­мож­ные зна­че­ния, ко­то­рые может при­ни­мать \text Im z.

5.  
i

На гра­фи­ке функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x левая круг­лая скоб­ка 2|x| плюс x пра­вая круг­лая скоб­ка най­ди­те все точки с от­ри­ца­тель­ны­ми абс­цис­са­ми, такие, что пло­щадь фи­гу­ры, огра­ни­чен­ная ка­са­тель­ной к гра­фи­ку, про­ве­ден­ной через каж­дую из таких точек, и самим гра­фи­ком, рав­ня­лась 36.

6.  
i

При каких зна­че­ни­ях па­ра­мет­ра p урав­не­ние \log _x минус p левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби x в квад­ра­те минус x плюс p в квад­ра­те минус p пра­вая круг­лая скоб­ка =2 имеет един­ствен­ный ко­рень?