Задания
Версия для печати и копирования в MS Word
 № 5036
i

В ос­но­ва­нии пи­ра­ми­ды пря­мо­уголь­ный тре­уголь­ник с чи­сто­той, рав­ной  ко­рень из 2 м. Вы­со­та пи­ра­ми­ды 6 м. Най­ди­те наи­боль­ший объем пи­ра­ми­ды.

Спрятать решение

Ре­ше­ние.

Объем пи­ра­ми­ды V = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби S умно­жить на H, где S  — пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка, а H  — вы­со­та пи­ра­ми­ды. Так как вы­со­та пи­ра­ми­ды H фик­си­ро­ва­на, то наи­боль­ший объем до­сти­га­ет­ся при наи­боль­шей пло­ща­ди ос­но­ва­ния S. Вы­со­та тре­уголь­ни­ка не пре­вос­хо­дит его ме­ди­а­ны, ко­то­рая в пря­мо­уголь­но­го тре­уголь­ни­ка равна по­ло­ви­не ги­по­те­ну­зы, то есть

S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ко­рень из 2 h мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ко­рень из 2 умно­жить на дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

Ра­вен­ство до­сти­га­ет­ся в пря­мо­уголь­ном рав­но­бед­рен­ном тре­уголь­ни­ке. Окон­ча­тель­но, объем пи­ра­ми­ды

V = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби умно­жить на 6 = 1 м3.

 

Ответ: 3.

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 4868

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ба­зо­вые клас­сы, РСФСР, 1979 год, ра­бо­та 4 (Тула), ва­ри­ант 2
? Классификатор: При­ме­не­ние про­из­вод­ной к ре­ше­нию задач
?
Сложность: 5 из 10