Задания
Версия для печати и копирования в MS Word
 № 2461
i

Най­ди­те об­ласть опре­де­ле­ния функ­ции y= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: ко­си­нус x левая круг­лая скоб­ка дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус синус x пра­вая круг­лая скоб­ка конец ар­гу­мен­та конец дроби .

Спрятать решение

Ре­ше­ние.

Для того, чтобы эта функ­ция была опре­де­ле­на, долж­но вы­пол­нять­ся не­ра­вен­ство  ко­си­нус x левая круг­лая скоб­ка дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус синус x пра­вая круг­лая скоб­ка боль­ше 0. Зна­чит,  ко­си­нус x и  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус синус x долж­ны иметь раз­ные знаки. Ясно, что обе функ­ции пе­ри­о­дич­ны с пе­ри­о­дом 2 Пи , по­это­му можно огра­ни­чить­ся слу­ча­ем, когда x при­над­ле­жит левая круг­лая скоб­ка 0;2 Пи пра­вая квад­рат­ная скоб­ка и затем вы­пи­сать общий ответ.

Оче­вид­но  ко­си­нус x боль­ше 0 при x при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; 2 Пи пра­вая квад­рат­ная скоб­ка и  ко­си­нус x мень­ше 0 при x при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка . При x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби и x= дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби имеем  ко­си­нус x=0.

Далее,  синус x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби при x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби и при x= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби , ясно что при x при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка вы­ра­же­ние  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус синус x от­ри­ца­тель­но, а при x при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка вы­ра­же­ние  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус синус x по­ло­жи­тель­но.

Зна­чит они имеют оди­на­ко­вые знаки при x при­над­ле­жит левая круг­лая скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 2 Пи пра­вая квад­рат­ная скоб­ка . За­ме­тим что по­след­ний от­ре­зок можно скле­ить с пер­вым от­рез­ком сле­ду­ю­ще­го пе­ри­о­да, упро­стив ответ.

Тогда окон­ча­тель­но по­лу­ча­ем x при­над­ле­жит \undersetk при­над­ле­жит Z \mathop\Cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи плюс 2 Пи k пра­вая круг­лая скоб­ка .

 

Ответ: \undersetk при­над­ле­жит Z \mathop\Cup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи плюс 2 Пи k пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 2455

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ма­те­ма­ти­че­ские клас­сы, РСФСР, 1991 год, ра­бо­та 2, ва­ри­ант 2
? Классификатор: Об­ласть опре­де­ле­ния функ­ции
?
Сложность: 8 из 10