Задания
Версия для печати и копирования в MS Word
 № 4057
i

Ре­ши­те не­ра­вен­ство  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 3 левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 10 боль­ше или равно 0.

Спрятать решение

Ре­ше­ние.

Пусть  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =t, при­чем t боль­ше 0, так как по­ка­за­тель­ная функ­ция при­ни­ма­ет толь­ко по­ло­жи­тель­ные зна­че­ния. Тогда ре­ше­ние дан­но­го по­ка­за­тель­но­го не­ра­вен­ства сво­дит­ся к ре­ше­нию квад­рат­но­го не­ра­вен­ства t в квад­ра­те минус 3t минус 10 боль­ше или равно 0. Решим со­от­вет­ству­ю­щее квад­рат­ное урав­не­ние t в квад­ра­те минус 3t минус 10=0. Най­дем его корни t_1=5 и t_2= минус 2, по­лу­чим  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка . Воз­вра­ща­ясь к ис­ход­ной пе­ре­мен­ной, по­лу­ча­ем  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше или равно 5. А так как  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше или равно 0 при любых зна­че­ни­ях x, то это не­ра­вен­ство рав­но­силь­но не­ра­вен­ству

 левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше или равно левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

По­сколь­ку по­ка­за­тель­ная функ­ция с ос­но­ва­ни­ем еди­ни­цы убы­ва­ет, то дан­ное не­ра­вен­ство рав­но­силь­но x мень­ше или равно минус 1.

 

Ответ:  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 4051

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ба­зо­вые клас­сы, РФ, 2001 год, ра­бо­та 6, ва­ри­ант 2
? Классификатор: По­ка­за­тель­ные не­ра­вен­ства
?
Сложность: 2 из 10