Задания
Версия для печати и копирования в MS Word
 № 3666
i

Ре­ши­те урав­не­ние 2 синус в квад­ра­те 2x минус 11 синус 2x минус 6=0.

Спрятать решение

Ре­ше­ние.

Пусть t= синус 2x, тогда

2t в квад­ра­те минус 11t минус 6=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний t= дробь: чис­ли­тель: 11 минус ко­рень из: на­ча­ло ар­гу­мен­та: 121 плюс 48 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ,t= дробь: чис­ли­тель: 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 121 плюс 48 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний t= дробь: чис­ли­тель: 11 минус 13, зна­ме­на­тель: 4 конец дроби ,t= дробь: чис­ли­тель: 11 плюс 13, зна­ме­на­тель: 4 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний t= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ,t=6. конец со­во­куп­но­сти .

Вер­нем­ся к ис­ход­ной пе­ре­мен­ной. Урав­не­ние  синус 2x=6 не имеет ре­ше­ний, по­сколь­ку синус не при­ни­ма­ет зна­че­ний боль­ше 1. Решим урав­не­ние

 синус 2x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби рав­но­силь­но 2x= левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс Пи k рав­но­силь­но
 рав­но­силь­но 2x= левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k рав­но­силь­но x= левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби , k при­над­ле­жит Z .

 

 

Ответ:  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка k плюс 1 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби плюс дробь: чис­ли­тель: Пи k, зна­ме­на­тель: 2 конец дроби :k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка .

Спрятать критерии
Критерии проверки:

За за­да­ние (или за каж­дый из че­ты­рех пунк­тов сю­же­та из че­ты­рех за­да­ний)

вы­став­ля­ет­ся одна из сле­ду­ю­щих оце­нок:

+ (3 балла),    ± (2 балла),    ∓ (1 балл),    − (0 бал­лов)

При этом не­об­хо­ди­мо ру­ко­вод­ство­вать­ся сле­ду­ю­щим.

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нийБаллы
Вер­ное и пол­ное вы­пол­не­ние за­да­ния3
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­щен один не­до­чет2
Ход ре­ше­ния вер­ный, ре­ше­ние до­ве­де­но до от­ве­та, но до­пу­ще­но два не­до­че­та или одна гру­бая ошиб­ка1
Осталь­ные слу­чаи0

К не­до­че­там от­но­сят­ся, на­при­мер: опис­ки, не­точ­но­сти в ис­поль­зо­ва­нии ма­те­ма­ти­че­ской сим­во­ли­ки; по­греш­но­сти на ри­сун­ках, не­до­ста­точ­но пол­ные обос­но­ва­ния; не­точ­но­сти в ло­ги­ке рас­суж­де­ний при срав­не­нии чисел, до­ка­за­тель­стве тож­деств или не­ра­венств; вы­чис­ли­тель­ные ошиб­ки, не по­вли­яв­шие прин­ци­пи­аль­но на ход ре­ше­ния и не упро­стив­шие за­да­чу, если за­да­ча не яв­ля­лась вы­чис­ли­тель­ной; за­ме­на стро­го знака не­ра­вен­ства не­стро­гим или на­о­бо­рот; не­вер­ное при­со­еди­не­ние либо ис­клю­че­ние гра­нич­ной точки из про­ме­жут­ка мо­но­тон­но­сти и ана­ло­гич­ные.

Гру­бы­ми ошиб­ка­ми яв­ля­ют­ся, на­при­мер: по­те­ря или при­об­ре­те­ние по­сто­рон­не­го корня; не­вер­ный отбор ре­ше­ния на про­ме­жут­ке при пра­виль­ном ре­ше­нии в общем виде; вы­чис­ли­тель­ная ошиб­ка в за­да­че на вы­чис­ле­ние; не­вер­ное из­ме­не­ние знака не­ра­вен­ства при умно­же­нии на от­ри­ца­тель­ное число, ло­га­риф­ми­ро­ва­нии или по­тен­ци­ро­ва­нии и т. п.


Задание парного варианта: 3672

? Источник: Вы­пуск­ной эк­за­мен по ма­те­ма­ти­ке. Ба­зо­вые клас­сы, РФ, 1996 год, ра­бо­та 1, ва­ри­ант 1
? Классификатор: Три­го­но­мет­ри­че­ские урав­не­ния
?
Сложность: 1 из 10