
Исследуйте функцию при помощи производной. Определите, при каких значениях параметра a уравнение
имеет три корня.
Решение. Найдём производную заданной функции:
Найдём нули производной:
Определим знаки производной функции и изобразим на рисунке поведение функции:
Теперь ясно, что убывает при
и при
а возрастает при
и при
Причем
— точки минимума, а
— точка максимума.
Отметим также, что — четная функция, то есть
поэтому каждое свое значение она принимает в парах симметричных точек, кроме
Поэтому единственный шанс на ответ к задаче это
Уравнение
можно преобразовать, получим:
Видно, что оно имеет ровно три корня.
Ответ: 3.
| За задание (или за каждый из четырех пунктов сюжета из четырех заданий) выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) При этом необходимо руководствоваться следующим. | |
| Критерии оценивания выполнения заданий | Баллы |
|---|---|
| Верное и полное выполнение задания | 3 |
| Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
| Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
| Остальные случаи | 0 |
| К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. | |
PDF-версии: