
В конус, осевым сечением которого является равносторонний треугольник с периметром, равным 3, вписан цилиндр наибольшего объёма. Найдите отношение высоты этого цилиндра к радиусу основания цилиндра.
Решение. Периметр треугольника равен 4, значит, сторона треугольника равна 1, а высота поэтому радиус основания конуса
а высота
Обозначим высоту цилиндра за h, а радиус основания за r, тогда его объем равен
Пусть S — вершина конуса, O — центр его основания, AB — диаметр основания.
Рассмотрим сечение конуса плоскостью SAB. Получим равносторонний треугольник, в который вписан прямоугольник. Назовем его вершины M, N, P, Q, при этом
Прямоугольные треугольники SOA и QMA подобны, поэтому
Значит, объем цилиндра равен
Определим наибольшее значение этой функции. Возьмем производную:
что положительно при и отрицательно при
Значит, функция
возрастает при
убывает при
и достигает наименьшего значения при
Тогда и
Ответ:
| За задание (или за каждый из четырех пунктов сюжета из четырех заданий) выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) При этом необходимо руководствоваться следующим. | |
| Критерии оценивания выполнения заданий | Баллы |
|---|---|
| Верное и полное выполнение задания | 3 |
| Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
| Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
| Остальные случаи | 0 |
| К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. | |
PDF-версии: