Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ УРОК — выпускные экзамены по математике
Задания
i

2.  Даны функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x плюс синус x и  g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка 2x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 1.

а)  Ре­ши­те не­ра­вен­ство  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка мень­ше или равно 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

б)  Ре­ши­те урав­не­ние  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

в)  Ис­сле­дуй­те функ­цию  h левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка на мо­но­тон­ность на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

г)  Пусть K, M и N  — точки гра­фи­ка функ­ции  h левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка с абс­цис­са­ми  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ,  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби со­от­вет­ствен­но. До­ка­жи­те, что дуги AM и MN гра­фи­ка функ­ции  h левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка равны между собой.