
Найдите первообразную функции
график которой проходит через точку 
Решение. Так как областью определения данной функции является все множество действительных чисел, кроме нуля, то будем искать первообразную на промежутке
Представим дробь в виде алгебраической суммы двух дробей и, упростив их, получим
На указанном множестве первообразную
запишем как
Таким образом, множество всех первообразных исходной функции задастся как

где С — константа. Через каждую точку плоскости проходит график только одной первообразной. Поэтому найдем значение константы, подставив в формулу координаты точки A:



Значит, уравнение первообразной функции
график которой проходит через точку
имеет вид:

Ответ: 
| За задание (или за каждый из четырех пунктов сюжета из четырех заданий) выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) При этом необходимо руководствоваться следующим. | |
| Критерии оценивания выполнения заданий | Баллы |
|---|---|
| Верное и полное выполнение задания | 3 |
| Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
| Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
| Остальные случаи | 0 |
| К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. | |

