
Напишите уравнение касательной, проведенной к графику функции параллельно прямой
Вычислите площадь фигуры, ограниченной графиком данной функции, этой касательной и осью ординат.
Решение. Если касательная параллельна прямой
то значение производной функции
в точке касания равно −2. Поскольку
получаем
откуда
— абсцисса точки касания. Тогда ордината точки касания равна
и уравнение касательной будет
Раскроем скобки и получим
Функция
задаёт параболу, ветви которой направлены вниз, поэтому она лежит ниже касательной. А значит, площадь описывается следующей формулой:
Ответ:
| За задание (или за каждый из четырех пунктов сюжета из четырех заданий) выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) При этом необходимо руководствоваться следующим. | |
| Критерии оценивания выполнения заданий | Баллы |
|---|---|
| Верное и полное выполнение задания | 3 |
| Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
| Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
| Остальные случаи | 0 |
| К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. | |
PDF-версии: