Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
Образовательный портал «РЕШУ УРОК» (https://exam-urok.sdamgia.ru)
Вариант № 663

Выпускной экзамен по математике. Базовые классы, РФ, 1992 год, работа 9, вариант 2

Для получения оценки «5» необходимо верно и полностью решить 5 заданий.

Продолжительность экзамена 5 астрономических часов.

1.

Решите неравенство  дробь: числитель: x в степени 2 плюс 6x плюс 9, знаменатель: 2 в степени x минус 4 конец дроби \geqslant 0.

2.

Найдите значение производной функции y=\ln(2 минус x) минус дробь: числитель: x, знаменатель: x в степени 2 плюс 1 конец дроби в точке x_0= минус 1.

3.

Решите неравенство  логарифм по основанию \textstyle дробь: числитель: 1, знаменатель: 2 конец дроби (x в степени 2 плюс x) меньше минус 1.

4.

Найдите критические точки функции f(x)=2 синус x плюс корень из 2 x. Укажите одну из точек максимума.

5.

Найдите ту первообразную функции f(x)=2x минус 2, график которой касается прямой y= минус 4x. Также вычислите площадь фигуры, ограниченной графиком найденной первообразной и прямыми y= минус 4x и y=0.

6.

Решите уравнение  корень из |1 минус 3x|=1 минус 3 умножить на |x|.